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1. Introduction

a,u+k'u=o, tnRb<5, �.1!

such that u satisfies the boundary conditions

� 2!tt=0, asz=G,

8Q
� =0 asz=6,
Bz

�.3!

'This work is supported in part by Sea Grant NA86AA-D-SG040.

In a homogeneous constant depth ocean with a free surface and a rigid

bottom, the propagating outgoing ~aves will evanesce except for a finite

number of propags.ting modes[i]. Let Rb � �   x, z!; x =  zi, s2! C R, 0 <

z < h} be a region corresponding to the finite depth ocean, where h is the

ocean depth . Let 0 be an object inbedded R~> . The Dirichlet boundary

value problem for the scattering of time-harmonic acoustic waves in the

ocean can be formulated as finding a solution u 6 C  Rb $ 6!  l C Rb $ 0!

to the Helmholtz equation



Here k is a positive constant known as the wave number, and u = u' + u',

where u' and. u' are the incident  entire! wave and the scattered wave

respectively. The scattered wave has the modal representation

n=O

where

�n+ 1!'~' !
4k2h2

and the n'" mod.e of u', u'� x!, satisfies the radiating condition

8u'�
lim r>  �" � ika�u'�! = 0, r = ~ x ~, n = 0, 1, ..., oo.

T~OO

The incident wave u' is scattered by 0 to produce a scattered "propagat-

ing" far-field pattern.[5]. We want to extract information about the far-field

in order to use it to investigate the object Q. This problem has already

been investigated. in R~ by Colton and Kirsch[2]. To do this they introduce

a certain dense subset of the far-field pattern. Colton and Monk [7],[8]

are able to determine the shape of the object by introducing an extremal

problem and solving it in projected subspaces. Two kinds of algorithms

have been developed for the whole space case [7],[8]; see also [6], How-

ever, in the case of a finite depth ocean, Gilbert and Xu[5] showed that the

"propagating" far-field pattern can only carry the information from X+1

propagating modes; here, N is the largest integer less than z . This loss



2 Complete Sets in 12 M!

Let R~ = { x, z! c R,O < z < h! where x =  zq,zz!, and h is a positive

constant. Let 0 be a bounded, connected domain in Rsb with C bound-

ary 8Q having an outward unit normal v. Moreover, define the relative

complement of 0 as 0,:= R~   K

Let J� r! denote Bessel's function of order n and B~ > r ! Hankel's func-

tion of the first kind of order n. P� z! and a�are defined as �.6! and

�.7!,

Theorem2.1 Let A be a complex number such that 0   ImA < oo

Then the set of functions

  � + A! [4 � z! J  ka�r ! cos m8! j
8

Bv

a
  � + A!IP� z! J  ka�r!sin m8!j

�,1!

�.2!

n, Tn = 0, l, ..., oo,

are complete in L  M!.

of information makes this nonlinear, improperly posed, inverse scattering

problem much inore difficult to solve than the case mention above.

In this paper, we consider the density properties of the propagating

far-field in a proper subspace of L  Di! where Di is the unit cylinder.

The propagating far field is decomposed into orthogonal components which

allows a numerical algorithm to be generated for the express purpose of re-

constructing the object A. This algorithm along with numerical simulations

will be presented in a following paper.



Proof: It suffices to show that if g E L~ BO!, such that

g r, z,8!  � + A! [P� z! J  ka�r !cos mH!]do = 0,f B
8A BV

f
B

g r, z,8!  � + A![P�{z!J  ka�r!sin m8!]d~ = 0,
sn BV

�.3!

�.4!

for m, n = 0, 1, ..., oo, then I is identically zero on BQ.

Let �,3!,�.3! be true for some g ~ L  BQ!, and let Q�be a cylinder

containing Q, Q�=   x, z! C R~, ] x ]= ro!, then for  x, z! C R, ! 0�, and

  , 1,"! g BQ, we know that for r =] x ]!]   ~= r', we can expand the Green's

function G z,  , ] x �   ]! as

G z, ,~ x �  ]! = � Q Q " ~ H~ j ka�r! J  ka�r'!
4 -0 =o 114" fl'

[cos{mH!cos m8'! + sin m8!sin m8'!]. �.~!

Here we denote {x, z! in cylindrical coordinates by {r, 8, z!, and   ,  ! by

 r', e', q!.

From {2.2! and �.3!, we can see that

u x,.!;= f   � + A!G z,   l x � g l!g "' 8 ~'!«
8Q BVg �.6!

eik
G z,q, I x-  I!�

4x

is identically zero for  x, z! C Rs> $ 0�. Since u, as defined by �.6!, is a

solution of the Helmholtz equation in Rt $ 5�, we can conclude by the an-

alyticity of solutions to the Helmholtz eqation [4] that ii{x, z! is identically

zero for  x,z! C Rt, $ 0,

Let  x, z! tend to OQ, then in view of the ray representation for the

Green's function [1]



where

ik

and the properties of single and double layer potentials, we know  cf.[3] [4]!

0 =, x,.! + f   � + A!G z, , ~ x �   ~!g f,  !du,  x,s! C BB �..8!O

Bn Bvg

Now let us denote by u+ xp, zp! u  xp, zp!,

8+  xp, zp! = lim u x, z!,  x, z! ~ Q� xp, zp! C OA,
 x,s!~ xo,so!

u  xp, zp! = lim u x, z!,  x, z! C 0,  xp, zp! C BQ.
 x,i! ~ xo,xq!

� 9!u~ � u =2g, onBQ,

Bu O' R
  � !+-  � ! =-2~g, «Bn,

Bv Ov
�,10!

Since u~ ��   >� "!+ � � 0, we have from �.9! and �.10! that

8'4
  � ! +Au =0, onBO. �,11!

Hence u, as defined by �.6!, is a solution of Helmholtz equation in 0

and continuously assumes the boundary data �.11! on BA. It follows that

u=GinQ.

Similar definitions are made for  >�"!+ and  >� "! . From our knowledge of

single and double layer potentials



By the relation
1

g= - u+ � u !, onBQ
2

we can conclude that g = 0 on BQ. It proves the completeness of the set

�.1! and �.2! in L~ BQ!.

3 Dense Sets in I  BQ!

H k, Q,!:=  u: u q t ' Q,! fl C' K!, u satisfies�.1! �.4! and�.8!!

2s
A k,R',!:=  u: u x,z! = g{ ,H'! Q P�  !P� z!e' ""'"d dH',

~a~

where  x, z! E R>, y =  cosH',sinH'!, g C L  D>!, A e Nf.

Moreover, we set

To k, Q,! = I u; u = u' + u', u' C A k, R !, u C H k, Q,!, u = 0, on BQ!,

and

BT g k, Q,! Bu
Bv Bv

Isn- f � iso' .u E Tg! ks Qs!!.

We want to prove the following

Theorem 3.1: ~s�' '  so is dense in L  OA!i

Proof'. Let g E L~ BQ! such that

f Bup � ds = 0, for any u, C T~ k, Q,!.
ao Bv

�.1!

We modify the notations of [2] to the case of R>, namely let Af be the

family of any finite subset of natural numbers containing 0,1,...,N; Dq ��

[o,h] x [g,2~]; »d



Bvu x,z! = u' x,z! � J G z, ,  x �   ~! � «<,
an Ov

�.2!

where u' E A k, R>~!, u = u'+ u'.

Let  x, z! ~ M, �.2! then implies that

Bz4u' x,z! = J G z,t,', t x �   ~! � «<,
an Ov

�.3!

and

We define the singular operators S,K, K' from Lz BQ! into itself as usual,

by setting

sP:= 2 f G z,  , i x �   ~!P    !do~,  x z! g BA,

G z   I x- l!~  , !«   x z! E o~
8

an Ov 

and

f 8K'P:= 2 J � G z,  ', ~ x �   ~!g  , E,"!«~,  x, z! C BA.
an gv~

In view of the representation �.5! for G z, , ~ x �   j! and the fact it

is symmetric with respect to  x, z! and   , !, it may be shown that K' is

the adjoint of K subject to the pairing

an

The Theorem will be proved if we can show that �.1! implies g=0 on BA.

If u be an arbitrary element of Tg k,0,!, then from the representation

formula [3j we get



Moreover, it can be seen that I+ K + iS is invertible. cf.I3]!. From �.3!

and �.4! it follows that

 I+ K+ iS! ' = 2  ' + iu' x,z!!,  x,z! E BQ, �.6!
Bu x, z! Bu' x, z!

Bv Bv

and hence

Bu x,.!,, B.  x,.!= 2 I+ K'+ iS! '  ' + iu' x,z!!,  x,z! C BQ. �.7!

Substituting �.7! into �.1! yields

Bu Bu
0 =  g, � !=  y; 2 I+ K'+ is! '  � + iu'! !

Bv Bv

=2< I+K+iS! g, +iu'>
Bu

Bv
�.8!

Since u' E A k, R~s!, using the Jacobi-Anger expansion,

 z!e'k'"~~»e g i~P� z! 1  ka�r!e' �.9!

for n = 0,1, ...,oo,

we conclude that P� z! J  ka�r!cosmH and P� z! J  ka�r!sinmH are ele-

ments of A k, R>!. Hence, from Theorem 2.1, we get

 I+ K+ is!-'g = 0;

and,

g=0, on80,

4 The Projection Theorem in V+

V:= L [0,27t] x span/$0,4>,...,gx! �.1!

Let X = [ ~ ], where Ia] means the interger part of a, and let us introduce

the product space



From [3],[5] we know that the propagating far-field patterns of acoustic

harmonic waves in a homogeneous finite depth ocean are contained in V

We will now establish a condition for the far field patterns to be dense in

V+ for arbitrary domains.

We define the injections:

�! P: A+ C A k, Rt,! ~ V by g:=Fu where

�.z!

where g C V, y =  cos8', sin8'!,  x, z! C R>, A+ =  u ~ A k, R>!; g Q

�! F: A k, R>! ~ V by F 8, z, k!:= Fu* where F 8, z, k! is the

propagating far-field pattern of u' for u = u'+ u' 6 Tp k, 0,!.

Let Z~ k, 0! =  u: u g C �! A C Q!, u is a solution of Helmholtz

equation in A and u=0 on 8Q}

We will prove the following result:

Theorem 4.1:

V" = [P ED k, 0! n A"!] e

where F A k,Rt,!! is the closure of F A k,Rt,!! in V

Froof: By the representation of u'[3], we have

,aG auu' x,z! = J  u' � � G !da,  x,z! C 0�� J.. a. a.

and

,.aG au0 = /  u' � � G !do,  x,z! c 0,.
Jan Bv Bv





g z,g![P 8� z! f � '8.  !e '-""cdo,]dzdg
1 g4=0

N

g z '! K8-  ! '"*'dzdg!8.  !!dec
an Bp  Di

Since g z, 8! g V~,

�.8!

f g z,8!P� z!e '" "'~dzd8 = 0,
Dl

for any n = X+1, ..., oo, so ��8! becomes

f 83ZLGs z,g!Fo' 8, z, k!dzd8 = � f o d,  !doc = 0 �.9!
Dz an Clv~

This proves the orthogonality

P ED k, n! n A"! Z

Now we prove that

�.10!P ED k Q! g A+!� ,R]

In fact, if g g V such that

�.].1!J g z,8!Fu' 8, z, k!dzd8 = 0, for any u' q A k, R,!
Dl

then from �.9!

f v  , !do'g � � 0, for anyu E TD k,0,!Btd

an Bvg �,1Z!

where

11

  , 0 = f g 8, ! p 8. z!8.  !" * zdc. "'�.ig!
+»sn <!zeozesn 3.l, ~>�' ' lsn is dense in I  BB!, so we cen conclude

that v = 0 on. BA. That is, v ~ ED k,0! n A~ and g = pv q p gD k, g! n



A !, It proves �.10!. Since V is a Hilbert space, �.10! implies the

theorem.

From the decomposition theorem �.1!, we get the following density

result:

Corollary 4.2 A sufBcient condition for the far-field patterns of the

problem �.1! �.5! to be dense in V is that E~ k, 0! A A = �!. i.e.

the eigenfunctions of Dirichlet problem are not elements of the set A+,

12
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